metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Xian-Fa Zhang, Shan Gao,* Li-Hua Huo and Hui Zhao

Laboratory of Functional Materials, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, People's Republic of China

Correspondence e-mail: shangao67@yahoo.com

Key indicators

Single-crystal X-ray study T = 295 KMean $\sigma(\text{C}-\text{C}) = 0.003 \text{ Å}$ R factor = 0.017 wR factor = 0.043 Data-to-parameter ratio = 12.3

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

A two-dimensional cadmium(II) coordination polymer with unusual 4.8² topology: poly[aqua(μ_3 -1*H*-imidazole-4,5-dicarboxylato)cadmium(II)]

In the title coordination polymer, $[Cd(C_5H_2N_2O_4)(H_2O)]_n$, the Cd^{II} atom is six-coordinated by one N atom and four O atoms from three individual imidazole-4,5-dicarboxylate (HIDC²⁻) anions and the O atom of a water molecule. The HIDC²⁻ anion serves as a bridging ligand to link the Cd^{II} atoms into a two-dimensional network.

Comment

The anion of 1*H*-imidazole-4,5-dicarboxylic acid (H₃IDC) exemplifies a bridging multi-dentate ligand that is used in the formation of supramolecular complexes. The acid can be successively deprotonated to furnish H₂IDC⁻, HIDC²⁻ and IDC³⁻ anions, these anions giving rise to a wide range of supramolecular architectures (Zhang *et al.*, 2005, 2006; Lu *et al.*, 2006). We report here the crystal structure of the title two-dimensional Cd^{II} coordination polymer [Cd(HIDC)(H₂O)]_n, (I), which contains a rare two-dimensional 4.8² net.

As shown in Fig. 1, the asymmetric unit of complex (I) comprises one Cd^{II} atom, one $HIDC^{2-}$ dianion and one coordinated water molecule (Fig. 1). Each Cd^{II} ion is six-coordinated by one N atom [Cd-N = 2.2383 (18) Å] and four O atoms [Cd-O = 2.2865 (15)–2.4294 (16) Å] from three $HIDC^{2-}$ ligands, and the O atom of a water molecule [Cd-O1w = 2.3073 (18) Å]. The coordination geometry around the Cd^{II} atom can be best described as distorted trigonal-prismatic (Fig. 2).

It is interesting to note that each HIDC^{2-} anion serves as a bridging ligand to link Cd^{II} atoms into a two-dimensional network structure (Fig. 3). In terms of topology, reducing the Cd^{II} centers as three-connected nodes, while the HIDC^{2-} ligands are viewed as linkers, this layer can be represented topologically as a 4.8² net (Fig. 4). The sheet of 4.8² topology consists of three-connected nodes shared by one tetragon and two octagons. Such a net was predicted by Wells (1977) but previously rarely observed for coordination frameworks

© 2007 International Union of Crystallography All rights reserved Received 13 March 2007 Accepted 2 April 2007

Figure 1

The asymmetric unit of the title complex, extended to show the complete coordination of Cd and the surroundings of the organic ligand, with displacement ellipsoids drawn at the 30% probability level. [Symmetry codes: (i) $-x + \frac{1}{2}$, $y - \frac{1}{2}$, $-z + \frac{1}{2}$; (ii) $x - \frac{1}{2}$, $-y + \frac{3}{2}$, $z - \frac{1}{2}$. (A) $x + \frac{1}{2}$, $-y + \frac{3}{2}$, $z + \frac{1}{2}$; (B) $-x + \frac{1}{2}$, $y + \frac{1}{2}$, $-z + \frac{1}{2}$.]

The coordination polydedron of the Cd^{II} atom.

(Long *et al.*, 2000; Kang *et al.*, 2005). In the two-dimensional network, strong π - π stacking interactions are observed between adjacent parallel imidazole rings (symmetry relationship: -x + 1, -y + 1, -z + 1), with a centroid–centroid separation of 3.3618 (6) Å. Furthermore, a three-dimensional supramolecular network is constructed *via* hydrogen-bonding interactions, involving the water molecules, the uncoordinated imidazole N atom, and carboxylate O atoms of HIDC²⁻ ligands (Table 2).

Experimental

Cadmium dinitrate tetrahydrate (3.08 g, 10 mmol), 1*H*-imidazole-4,5dicarboxylic acid (1.54 g, 10 mmol) and NaOH (0.4 g, 10 mmol) were

Figure 3 The two-dimensional network structure of (I). For clarity, water molecules and H atoms have been omitted.

Schematic representation of the 4.8^2 topology of (I).

dissolved in an aqueous solution (25 ml). The mixture was sealed in a 50 ml Teflon-lined stainless steel bomb and held at 403 K for 5 d. The bomb was then allowed to cool naturally to room temperature, and colorless prismatic crystals of (I) were obtained after several days. Analysis calculated for $C_5H_4CdN_2O_5$: C 21.11, H 1.42, N 9.85%; found: C 21.15, H 1.46, N 9.83%.

 Crystal data

 $[Cd(C_5H_2N_2O_4)(H_2O)]$ $V = 665.8 (2) Å^3$
 $M_r = 284.50$ Z = 4

 Monoclinic, $P2_1/n$ Mo K α radiation

 a = 6.5915 (13) Å $\mu = 3.27 \text{ mm}^{-1}$

 b = 9.950 (2) Å T = 295 (2) K

 c = 10.546 (2) Å $0.35 \times 0.24 \times 0.16 \text{ mm}$

metal-organic papers

Data collection

Rigaku R-AXIS RAPID

diffractometer Absorption correction: multi-scan (*ABSCOR*; Higashi, 1995) $T_{min} = 0.401, T_{max} = 0.594$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.017$ $wR(F^2) = 0.043$ S = 1.071521 reflections 124 parameters 3 restraints

Table 1

Selected geometric parameters (Å, °).

Cd1-N1	2.2383 (18)	Cd1-O2 ⁱⁱ	2.3122 (17)
$Cd1-O2^{i}$	2.2865 (15)	Cd1-O3 ⁱⁱ	2.3649 (16)
Cd1-O1W	2.3073 (18)	Cd1-O1	2.4294 (16)
N1 Cd1 O2 ⁱ	116 25 (6)		141.00 (6)
N1-Cd1-O2	110.55 (6)	01w - Ca1 - 03	141.09 (6)
N1-Cd1-O1W	111.29 (7)	$O2^{"}-Cd1-O3^{"}$	77.53 (6)
$O2^{i}-Cd1-O1W$	81.49 (7)	N1-Cd1-O1	70.45 (6)
N1-Cd1-O2 ⁱⁱ	164.91 (6)	$O2^{i}-Cd1-O1$	159.05 (6)
$O2^i - Cd1 - O2^{ii}$	71.60 (6)	O1W-Cd1-O1	77.65 (6)
O1W-Cd1-O2 ⁱⁱ	81.94 (6)	O2 ⁱⁱ -Cd1-O1	106.95 (6)
N1-Cd1-O3 ⁱⁱ	87.44 (6)	O3 ⁱⁱ -Cd1-O1	77.27 (6)
O2 ⁱ -Cd1-O3 ⁱⁱ	121.49 (6)		

6292 measured reflections

 $R_{\rm int} = 0.017$

refinement

 $\Delta \rho_{\rm max} = 0.55 \text{ e } \text{\AA}^{-3}$

 $\Delta \rho_{\rm min} = -0.44 \text{ e } \text{\AA}^{-3}$

1521 independent reflections

1464 reflections with $I > 2\sigma(I)$

H atoms treated by a mixture of

independent and constrained

Symmetry codes: (i) $-x + \frac{1}{2}$, $y - \frac{1}{2}$, $-z + \frac{1}{2}$; (ii) $x - \frac{1}{2}$, $-y + \frac{3}{2}$, $z - \frac{1}{2}$.

Table 2 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$\begin{array}{c} O1W-H1W1\cdots O4^{iii}\\ O1W-H1W2\cdots O3^{iv}\\ N2-H2\cdots O3^{v} \end{array}$	0.85 (1)	1.85 (1)	2.696 (3)	173 (3)
	0.85 (1)	2.07 (2)	2.877 (3)	158 (3)
	0.86	1.92	2.776 (2)	171

Symmetry codes: (iii) x, y, z - 1; (iv) $x + \frac{1}{2}, -y + \frac{3}{2}, z - \frac{1}{2}$; (v) $-x + \frac{1}{2}, y - \frac{1}{2}, -z + \frac{3}{2}$.

H atoms on C and N atoms were placed in calculated positions, with C-H = 0.93 Å, N-H = 0.86 Å and $U_{iso}(H) = 1.2U_{eq}(C,N)$, and were refined in the riding-model approximation. Water H atoms were located in a difference Fourier map and refined with O-H and H···H distance restraints of 0.85 (1) and 1.39 (1) Å, respectively, and $U_{iso}(H) = 1.5U_{eq}(O)$.

Data collection: *RAPID-AUTO* (Rigaku, 1998); cell refinement: *RAPID-AUTO*; data reduction: *CrystalStructure* (Rigaku/MSC, 2002); program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEPII* (Johnson, 1976); software used to prepare material for publication: *SHELXL97*.

The authors thank the Heilongjiang Province Natural Science Foundation (No. B200501), the Scientific Fund of Remarkable Teachers of Heilongjiang Province (1054 G036) and Heilongjiang University for supporting this study.

References

- Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138, Oak Ridge National Laboratory, Tennessee, USA.
- Kang, Y., Zhang, J., Li, Z. J., Qin, Y.-Y. & Yao, Y.-G. (2005). Inorg. Chem. Commun. pp. 722–724.
- Long, D. L., Blake, A. J., Champness, N. R. & Schröder, M. (2000). Chem. Commun. pp. 1369–1370.
- Lu, W. G., Jiang, L., Feng, X. L. & Lu, T. B. (2006). Cryst. Growth Des. 6, 564– 571
- Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.
- Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.
- Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
- Wells, A. F. (1977). Three-dimensional Nets and Polyhedra. New York: Wiley-Interscience.
- Zhang, M. B., Chen, Y. M., Zheng, S. T. & Yang, G. Y. (2006). Eur. J. Inorg. Chem. pp. 1423–1428.
- Zhang, X.-F., Gao, S., Huo, L.-H. & Zhao, H. (2005). Acta Cryst. E61, m2488– m2490.